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Abstract Classes of kinetic differential equations are delineated which do have a
quadratic first integral, and classes which can not have one. Example reactions corre-
sponding to the obtained kinetic differential equations are shown, and a few figures
showing the trajectories of the corresponding systems are also included. Connections
to other areas are mentioned and unsolved problems collected. The new results are
theoretical, although computational tools are heavily used. Applications from biology
and combustion theory will come later.

Keywords First integral · Kinetic differential equation · Computational biology
and chemistry

1 Introduction

Our aim is to determine classes of mass action type kinetic differential equations with
the property of having a quadratic first integral. Since the introduction of the name of
first integral by E. Nöther, in 1918 it turned out that first integrals may help

• prove that the complete solution of the induced kinetic differential equation is
defined for all positive times [38, p. 586, Theorem 9];
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• reduce the number of variables either by constructing an appropriate lumping
scheme [17] or by simply eliminating some variables;
• apply the generalization of the Bendixson and Bendixson–Dulac criterion to higher

dimensional cases [31,40].

Our main tool to find such first integrals is the comparison of coefficients of poly-
nomials and the characterization of kinetic differential equations within the class of
polynomial ones [14]. (A good review of our earlier results has been given by [3]).
This characterization has proved quite useful in

• designing minimal oscillatory reactions [34],
• providing an alternative proof for the uniqueness of the Lotka–Volterra model

[21,23],
• investigating chaos in chemical reactions [11,33],
• investigating symmetries in kinetic differential equations [29,32];
• selecting the kinetic lumping schemes from all the possible ones [8],
• finding necessary conditions of Turing instability [27,28].

(Let us remark in passing that Dilao [5] in his detailed analysis of Turing instability
disregarded this characterization, therefore his Case f) in Theorem 2.2 cannot occur
in a mass action type kinetic model).

We are also interested in kinetic differential equations with quadratic first integrals
which describe mass conserving reactions [4,15,24]. It turns out in some cases that
the existence of a quadratic first integral and mass conservation together form a too
rigorous set of requirements: we may be able to prove that such equations do not exist.

Once we have a kinetic differential equation fulfilling some requirements we might
be interested in reactions with the given induced kinetic differential equation. However,
the solution to this problem is far from being unique [30, page 48–49], [6, page 67–68].
One possible approach might be that we try to find a reaction with a given property
(weak reversibility, zero deficiency etc.), or a minimal or maximal reaction in a certain
sense with a given property [25,26].

The structure of our paper is as follows. Section 2 presents the basic definitions.
Section 3 gives the general results, both positive and negative: on the existence and
nonexistence of kinetic differential equations with quadratic first integrals depending
possibly on further assumptions. In some cases we also show a reaction having the
obtained differential equation, and a few figures reflecting the behavior of possible
trajectories. Section 4 shows how Mathematica (more precisely, the program package
ReactionKineticswritten in the Mathematica language, [20,35,36]) can be used
to formulate, prove or disprove conjectures. Finally, Sect. 5 formulates problems to
be solved.

2 Mass action type kinetic differential equations

Here we recapitulate very shortly the basic concepts of formal reaction kinetics as
they can be found e.g. in [6,18] or [35].
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2.1 Induced kinetic differential equation of a reaction with mass action type kinetics

Let us consider a vessel (a cell, a reactor, a test tube etc.) of constant volume at constant
pressure and temperature and let M, R ∈ N;α, β ∈ N

M×R
0 , and consider the complex

chemical reaction:

M∑

m=1

α(m, r)X (m) −→
M∑

m=1

β(m, r)X (m) (r = 1, 2, . . . , R), (1)

where the components of the matrices α = (α(m, r))m=1,2,...,M;r=1,2,...,R and β =
(β(m, r))m=1,2,...,M;r=1,2,...,R are the stochiometric coefficients. There are a few
natural conditions fulfilled by the stoichiometric matrix (see e.g. [4, page 77]):

1. all the species take part in at least one reaction step;
2. all the reaction steps change the quantity of at least one species;
3. all the reaction steps are determined by their reactant and complex products.

Remark 1 The last requirement may be too restrictive because if a reaction can proceed
through two different transition states, as in the reaction

CH3CHOH+ O2 � HO2 + CH3CHO

[41], then one should duplicate this step to exactly represent the mechanistic details
of the reaction.

Suppose the reaction can adequately be described using mass action kinetics, then
its deterministic model is

cm
′(t) = fm(c(t)) :=

R∑

r=1

(β(m, r)− α(m, r))kr

M∏

p=1

cp(t)
α(p,r) (2)

cm(0) = cm0 ∈ R
+
0 (m = 1, 2, . . . , M) (3)

(with the positive reaction rate coefficients kr )—describing the time evolution of the
concentration versus time functions

t �→ cm(t) := [X (m)](t)

of the species. Equation (2) is also called the mass action type induced kinetic dif-
ferential equation of the reaction (1).

2.2 Polynomial and kinetic differential equations

The induced kinetic differential equation of the reaction (1) is a polynomial differen-
tial equation, because all the functions fm are polynomials in all their variables. (This
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property can be shown to be equivalent with the fact that fm is an M-variable poly-
nomial [2]). However, it is not true that all polynomial differential equations can be
obtained as induced kinetic differential equations of some reactions, as the examples

x ′ = y, y′ = −x

(of the harmonic oscillator), or the Lorenz model

x ′ = σ(y − x), y′ = ρx − xz , z′ = xy − βz (σ, ρ, β > 0)

show. The speciality of kinetic differential equations is that they cannot contain terms
like those boxed above, i.e. terms expressing the decay of a quantity without its par-
ticipation. Such terms are said to represent negative cross effects [14]. Moreover, it is
also true that the absence of such terms allows us to construct a reaction inducing the
given differential equation [14]. To formulate this property and also our statements
below we need the following definition.

Definition 1 Let M ∈ N, and let us suppose that P : RM −→ R
M is a function with

the property that all its coordinate functions are polynomials in all their variables.
Then the differential equation

x
′ = P ◦ x (4)

is said to be a polynomial differential equation.

Let us remark that R
2 � (x, y)→ xy is a second degree polynomial although it is

of the first degree in all of its variables. When formulating and proving our results in
Sect. 3 below we sometimes need notations different from those in the above definition
for the sake of transparency.

Definition 2 Let us consider the polynomial differential equation (4), and suppose
that there is an m ∈ {1, 2, . . . , M} and a vector

cm
0 := (c1, c2, . . . , cm−1, 0, cm+1, . . . , cM )

(cp ≥ 0 for p = 1, 2, . . . , m − 1, m + 1, . . . , M) so that Pm(cm
0 ) < 0. Then, (4) is

said to contain negative cross-effect.

Our starting point is the following statement the constructive proof of which can
be found in [14].

Theorem 1 A polynomial differential equation is the induced kinetic differential equa-
tion of a reaction endowed with mass action type kinetics if and only if it contains no
negative cross-effect.

Then, it is quite natural to call polynomial differential equations kinetic if they
have no negative cross-effect.
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Let us remark that the absence of a negative cross-effect is stronger than the property
that the velocity of the vector field is always pointing into the interior of the first orthant
(implying that the first orthant is an invariant set of (2)) as the remark by Feinberg
(cited in [30, p. 41]) shows:

c′1 = c2 + c2
2 − 2c2c3 + c2

3, c′2 = 0, c′3 = 0.

It may be useful to know that Chellaboina et al. gave practically the same example
and also reproduced our proof of the above theorem in [3].

2.3 Mass conservation

Although it is very convenient to allow reactions like X −→ 0 to describe outflow,
or those like 0 −→ X to represent inflow, or X −→ 2X to denote autocatalysis, it is
still quite natural to give extra importance to reactions which do conserve mass. The
intuitive meaning of mass conservation is that calculating the total mass on both sides
of a reaction step we get the same amount [15, page 89].

Definition 3 The reaction (1) is said to be stoichiometrically mass conserving, if
there exists a vector � ∈ (R+)M for which

∀r ∈ {1, 2, . . . , R} :
M∑

m=1

�(m)α(m, r) =
M∑

m=1

�(m)β(m, r) (5)

is fulfilled.

It is not so trivial to decide if a reaction of the form (1) is stoichiometrically mass
conserving or not if we are only given the stoichiometric coefficients [4,24]. (These
last papers provide sufficient and necessary conditions of, and algorithms to decide
mass conservativity).

Now an equivalent definition of stoichiometric mass conservation will be given. To
arrive at that definition preparations are to be made.

Definition 4 The stochiometric subspace of the reaction (1) is the linear space

S := span {α(., r)− β(., r); r = 1, 2, . . . , R}.

With this, the reaction (1) is stoichiometrically mass conserving if there exists a vector
with positive coordinates in the orthogonal complement of the stoichiometric subspace.
The set c0 + S (c0 ∈ (R+)M ) is a (positive) reaction simplex.

A fundamental result by Horn and Jackson [15] follows.

Theorem 2 A reaction is stoichiometrically mass conserving if and only if all positive
reaction simplexes are bounded.
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An immediate consequence of the theorem is that a complete solution of a stoichio-
metrically mass conserving system is defined for all nonnegative times. Further much
more refined statements on nonnegativity can be found in [38].

Example 1 Stoichiometric mass conservation is sufficient but not necessary for the
preservation of (possibly, weighted) total mass. The example [9, page 89] shows that
a positive linear combination of the concentrations can be constant even if the positive
coefficients do not lie in the orthogonal complement of the stoichiometric subspace.
If this is the case one may speak about a kinetically mass conserving reaction. Let
us see the details (Fig. 1).

Let all the reaction rate constants be unity. Now we are going to show that the vector
� = (

1 2 4 1 4 5 2 2 1
)
 is orthogonal to the right hand side of the induced kinetic

differential equation

a′ = −2ab + c b′ = −2ab + c c′ = ab − 2c

d ′ = c − de + f e′ = c − de + f f ′ = de − f

g′ = ab − g + j2 h′ = g − h + j2 j ′ = 2h − 4 j2

of the reaction but it is not orthogonal from the left to the matrix

γ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9 10
A −1 1 0 0 0 −1 0 0 0 0
B −1 1 0 0 0 −1 0 0 0 0
C 1 −1 −1 0 0 0 0 0 0 0
D 0 0 1 −1 1 0 0 0 0 0
E 0 0 1 −1 1 0 0 0 0 0
F 0 0 0 1 −1 0 0 0 0 0
G 0 0 0 0 0 1 −1 0 0 1
H 0 0 0 0 0 0 1 −1 1 0
J 0 0 0 0 0 0 0 2 −2 −2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

of the elementary reaction vectors. Really,

�

(

a′ b′ c′ d ′ e′ f ′ g′ h′ j ′
)
 = 0,

and

�
γ = (
1 −1 1 0 0 −1 0 0 0 0

)
 �= 0
.

1
1

1
1 1

1

1

11

1

A B C D E FG

H

2 J

Fig. 1 The Feinberg–Horn example
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It is a very natural requirement that a numerical method aimed at solving (2)
should keep the total mass

∑M
m=1 �mcm(t) constant (independent on time) in case

of a mass conserving reaction. There are some methods to have this property, see e.g.
[1]. A similar requirement is to keep other, e.g. quadratic first integrals, what has also
been shown for some methods [22].

However, not much is known about equations, especially kinetic differential equa-
tions with quadratic first integrals. Obviously, equations of mechanics, like that of the
standard harmonic oscillator x ′ = y y′ = −x may have quadratic first integrals,
V (p, q) := p2 + q2 in this case, and here the meaning of the quadratic first integral
is the total mechanical energy.

3 Existence and nonexistence of quadratic first integrals

3.1 Diagonal first integrals

Theorem 3 Let us consider the following system of differential equations

x ′m = Fm ◦ (x1, x2, . . . , xM ), (m = 1, . . . , M) (7)

where the functions Fm are quadratic functions of the variables, that is,

Fm(x1, x2, . . . , xM ) =
M∑

p=1

Am,px2
p +

M∑

p=1
p �=m

Bm,pxm x p

+
M∑

p,q=1
p<q

p �=m,q �=m

Cm
p,q x pxq +

M∑

p=1

Dm,px p + Em . (8)

Suppose that the system of differential equations is kinetic. The function

V (x1, x2, . . . , xM ) = a1x2
1 + a2x2

2 + · · · + aM x2
M

(with am > 0 for m = 1, 2, . . . , M) is a first integral for the above system if and only
if the functions Fm have the following form with Km,p ≥ 0:

Fm(x1, x2, . . . , xM ) =
M∑

p=1
p �=m

ap Km,px2
p −

M∑

p=1
p �=m

ap K p,m xm x p. (9)
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Proof The function V is a first integral for the system (7) if and only if its Lie-derivative
with respect to the system is equal to zero, that is,

0 = 1

2

M∑

m=1

∂m V (x1, x2, . . . , xM )Fm(x1, x2, . . . , xM )

=
M∑

m=1

am

⎛

⎜⎜⎜⎝

M∑

p=1

Am,pxm x2
p +

M∑

p=1
p �=m

Bm,px2
m x p

+
∑

m �=p,m �=q
p<q

Cm
p,q xm x pxq +

M∑

p=1

Dm,pxm x p + Em xm

⎞

⎟⎟⎠ (10)

Since the system (7) is kinetic, the coefficients of terms in Fm not containing xm are
nonnegative:

(k1) Am,p ≥ 0 for m, p = 1, 2, . . . M; m �= p
(k2) Cm

p,q ≥ 0 for m, p, q = 1, 2, . . . M; m �= p, m �= q, p < q
(k3) Dm,p ≥ 0 for m, p = 1, 2, . . . M; m �= p
(k4) Em ≥ 0 for m = 1, 2, . . . M.

For all m, the coefficients of x3
m, x2

m and xm are am Am,m, am Dm,m and am Em,m ,
respectively. Since these monomials are independent of each other and of the other
terms in (10), it follows that Am,m = Dm,m = Em,m = 0.

If m �= p, then the monomial xm x p appears twice in (10) with coefficients am Dm,p

and ap Dp,m . Thus am Dm,p + ap Dp,m = 0 and because of (k3), Dm,p = Dp,m = 0.
If m �= p, m �= q, p < q, then the monomial xm x pxq appears three times in (10)

with coefficients amCm
p,q , apC p

m,q and aqCq
m,p. Thus amCm

p,q+apC p
m,q+aqCq

m,p = 0
and because of (k2), Cm

p,q = C p
m,q = Cq

m,p = 0.
If m �= p, then the monomial xm x2

p appears twice in (10) with coefficients am Am,p

and ap Bp,m and thus am Am,p+ap Bp,m = 0 where Am,p ≥ 0 because of (k1). Without
the loss of generality, it may be assumed that Am,p = ap Km,p where Km,p ≥ 0 and
so Bp,m = −am Km,p.

The the proof of the if part is obvious. �
Example 2 Let M = 2 and suppose that V (x, y) = x2 + y2. Then (9) specializes to

x ′ = ay2 − bxy, y′ = bx2 − axy (11)

which may be considered as the induced kinetic differential equation of the reaction

X
a← X+ Y

b→ Y 2X
b→ 2X+ Y 2Y

a→ X+ 2Y (12)
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as the application of RightHandSide[{X <-X + Y -> Y, 2 X -> 2
X + Y, 2 Y -> X + 2 Y},{a, b, b, a}, {x, y}] gives: {ay2−bxy,

bx2 − axy}. A typical trajectory is shown in Fig. 3a. Naturally arises the question if
the differential equation (11) can be represented with a mechanism only containing
three complexes 2X, 2Y, X+ Y. It can be easily shown that the answer is negative.

Example 3 Let M = 3 and suppose that V (x, y, z) = x2+ y2+ z2. Then (9) special-
izes to

x ′ = ay2 + bz2 − cxy − exz

y′ = cx2 + dz2 − axy − f yz

z′ = ex2 + f y2 − bxz − dyz (13)

(with nonnegative coefficients a, b, c, d, e, f ) which may be considered as the induced
kinetic differential equation of the reaction shown in Fig. 2. as again the application
of RightHandSide verifies. A typical trajectory is shown in Fig. 3b.

Corollary 1 As the divergence of the system (13) is−ax−bx−cy−dy−ez− f z < 0
in the first orthant and the system has a first integral, [31, Theorem 3.3] (actually, a
version of K. R. Schneider’s theorem) implies that it has no periodic orbit in the first
orthant.

The next result shows that (even weighted) sum of squares cannot be a first integral
if mass is conserved.

Theorem 4 Let us consider the differential equation system (7) where the functions
Fm are of the form (8). Suppose that the differential equation system is kinetic and
kinetically mass conserving. The function

V (x1, x2, . . . , xM ) = a1x2
1 + a2x2

2 + · · · + aM x2
M

(where am �= 0 for all m) is a first integral for the system (7), if and only if for all m:

Fm(x1, x2, . . . , xM ) = 0.

a

c

b

e

d

f

X Y

X

Y

X Z

Z

Y Z

c e

f a

b d

2 X2 X Y 2 X Z

2 Y2 Y Z X 2 Y

2 ZX 2 Z Y 2 Z

Fig. 2 3D system with a quadratic first integral
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0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

(a) (b)

Fig. 3 a Trajectories of system (11) with a = 2, b = 3 starting from x(0) = 1, y(0) = 0. b Trajectories of
system (13) with a = 2, b = 3, c = 4, d = 5, e = 6, f = 7 starting from x(0) = 1√

2
, y(0) = 1√

2
, z(0)=0

Proof The function V is a first integral for the system (7) if and only if (10) holds.
Since the system (7) is kinetic and mass conserving with some positive numbers
�m, m = 1, 2, . . . , M ; besides (k1)− (k4) the following inequalities also hold:

(m1) for all m
∑M

p=1 �p Ap,m = 0 (the sum of the coefficients of x2
m)

(m2) for all m, p �m Bm,p + �p Bp,m + ∑M
q=1

q �=m,q �=pm<p

�qCq
m,p = 0

(the sum of the coefficients of xm x p)

(m3) for all m
∑M

p=1 �p Dp,m = 0 (the sum of the coefficients of xm)

(m4) for all m
∑M

m=1 �m Em = 0.

Similarly, as in the proof of Theorem 3, for all m : Am,m = 0, Dm,m = 0 and
Em = 0. Then, for all m �= p, because of (k1) and (m1) : Am,p = 0, and because of
(k3) and (m3) : Dm,p = 0.

If m �= p, then the coefficient of x2
m x p in (10) is am Bm,p + ap Ap,m = 0. Since

Ap,m = 0, it follows that for all m, p, m �= p : Bp,m = 0. Finally, because of (k2)

and (m2), for all m, p, q such that q �= m, q �= p, m < p : Cq
m,p = 0.

The proof of the if part is obvious. �

Theorem 5 Let us consider the following differential equation system

x ′k = Xk ◦ (x1, . . . , xK , y1, . . . , yL , z), (k = 1, . . . , K )

y′l = Yl ◦ (x1, . . . , xK , y1, . . . , yL , z), (l = 1, . . . , L)

z′ = Z ◦ (x1, . . . , xK , y1, . . . , yL , z) (14)
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where the functions Xk, Yl , Z are quadratic polynomials of all the variables and K , L
are positive integers. Suppose that the differential equation system is kinetic and kinet-
ically mass conserving with some positive numbers �x

k , �
y
l , �z . (k = 1, . . . , K , l =

1, . . . , L). The function

V (x1, . . . , xK , y1, . . . , yL , z) = a1x2
1 + . . . aK x2

K − b1 y2
1 − . . . bL y2

L

(where ak > 0 and bl > 0 for all k, l) is a first integral for system (14) if and only if

Xk(x1, . . . , xK , y1, . . . , yL , z) =
L∑

l=1

bl Ak,l yl z, (k = 1, . . . , K )

Yl(x1, . . . , xK , y1, . . . , yL , z) =
K∑

k=1

ak Ak,l xk z, (l = 1, . . . , L)

Z = −
(

K∑

k=1

�x
k Xk +

L∑

l=1

�
y
l Yl

)

where Ak,l ≥ 0 for all k, l. If K = 0 or L = 0, then Xk = Yl = Z = 0.

Proof The function V is a first integral for the system (14) if and only if the Lie-
derivative is equal to zero, that is,

K∑

k=1

ak xk Xk(x1, . . . , xK , y1, . . . , yL , z)−
L∑

l=1

bl ylYl(x1, . . . , xK , y1, . . . , yL , z)=0

(15)

It is obvious that the functions Xk, Yl , Z may not contain constant terms. Since the
system (14) is kinetic and mass conserving, the constants are nonnegative and their
weighted sum with positive weights is equal to zero, and thus each constant is equal
to zero.

Next we show that the terms x2
k , y2

l , z2 and xk, yl , z in Xk, Yl , Z have zero coeffi-
cients for all k, l. Let us consider at first only the terms containing quadratic and linear
monomials.

Xk =
⎛

⎝
K∑

i=1

Ax
k,i x2

i +
L∑

j=1

Bx
k, j y2

j + Cx
k z2

⎞

⎠+
⎛

⎝
K∑

i=1

A
x
k,i xi +

L∑

j=1

B
x
k, j y j + C

x
k z

⎞

⎠+ . . .

Yl =
⎛

⎝
K∑

m=1

Ay
l,m x2

m +
L∑

n=1

B y
l,n y2

n + C y
l z2

⎞

⎠+
⎛

⎝
K∑

m=1

A
y

l,m xm +
L∑

n=1

B
y

l,n yn + C
y

l z

⎞

⎠+ . . .

Z =
⎛

⎝
K∑

k=1

Az
k x2

k +
L∑

l=1

Bz
l y2

l + Czz2

⎞

⎠+
⎛

⎝
K∑

k=1

A
z
k xk +

L∑

l=1

B
z
l yl + C

z
z

⎞

⎠+ . . . (16)

�
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(a) The coefficients of x3
k and y3

l in (15) are ak Ax
k,k and −bl B y

l,l , respectively, and

so for all k, l : Ax
k,k = B y

l,l = 0. Because of mass conservation, the weighted sums of

the coefficients of x2
k and y2

l in (16) are equal to zero, that is,

K∑

s=1,s �=k

�x
s Ax

s,k +
L∑

t=1

�
y
t Ay

t,l + �z Az
k = 0 for all 1 ≤ k ≤ K

K∑

s=1

�x
s Bx

s,k +
L∑

t=1,t �=l

�
y
t B y

t,l + �z Bz
l = 0 for all 1 ≤ l ≤ L

Since the system (14) is kinetic, each term in the above sums is nonnegative, therefore
each coefficient of x2

k and y2
l in (16) is equal to zero. The coefficients of xk z2 and

yl z2 in (15) are akCx
k and −blC

y
l , respectively, and so for all k, l : Cx

k = C y
l = 0.

Therefore, because of mass conservation, Cz = 0 as well.
(b) The coefficients of x2

k and y2
l in (15) are ak A

x
k,k and −bl B

y
l,l , respectively,

therefore A
x
k,k = B

y
l,l = 0. It can be shown very similarly as in part (a) that the

coefficients of xk, yl , z in Xk, Yl , Z are equal to zero as well.
(c) Next consider the terms of the form xs xt , ys yt and xi y j (where s < t) in

Xk, Yl , Z . We show that these terms have zero coefficients as well for all s, t, i, j ,
where s < t .

Xk =
K∑

s,t=1
s<t

Dx,k
s,t xs xt +

L∑

s,t=1
s<t

E x,k
s,t ys yt +

∑

1≤s≤K
1≤t≤L

F x,k
s,t xs yt + . . .

Yl =
K∑

s,t=1
s<t

Dy,l
s,t xs xt +

L∑

s,t=1
s<t

E y,l
s,t ys yt +

∑

1≤s≤K
1≤t≤L

F y,l
s,t xs yt + . . .

Z =
K∑

s,t=1
s<t

Dz
s,t xs xt +

L∑

s,t=1
s<t

Ez
s,t ys yt +

∑

1≤s≤K
1≤t≤L

Fz
s,t xs yt + . . . (17)

For all s < t the coefficients of x2
s xt , xs x2

t , y2
s yt and ys y2

t in (15) are as Dx,s
s,t , at Dx,t

s,t ,

−bs E y,s
s,t and −bt E y,t

s,t , respectively, and so Dx,s
s,t = Dx,t

s,t = E y,s
s,t = E y,t

s,t = 0.
Since the system is kinetic and because of mass conservation, for all 1 ≤ k <

l ≤ K ,
∑K

i=1
i �=k,l

�x
i Dx,i

k,l +
∑L

j=1 �
y
j Dy, j

k,l + �z Dz
k,l = 0 and for all 1 ≤ m < n ≤

L ,
∑K

i=1 �x
i E x,i

m,n +∑L
j=1

j �=m,n

�
y
j E y, j

m,n + �z Ez
m,n = 0 where each term in the sums is

nonnegative and thus the coefficients of the terms xs xt and ys yt (s < t) are equal to
zero.
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(d) The coefficients of x2
k yl and xk y2

l (1 ≤ k ≤ K , 1 ≤ l ≤ L) in (15) are ak F x,k
k,l

and −bl F y,l
k,l , respectively, and so for all k, l: F x,k

k,l = F y,l
k,l = 0. Since the system is

kinetic, and because of mass conservation,
∑K

i=1
i �=k

�x
i F x,i

k,l +
∑L

j=1
j �=l

�
y
j F y, j

k,l +�z Fz
k,l = 0

where each term in the sum is nonnegative. Therefore, each coefficient of xk yl in (17)
is equal to zero.

Now we may suppose that Xk, Yl , Z have the following form:

Xk =
K∑

s=1

Gx
k,s xs z +

L∑

s=1

H x
k,s ys z

Yl =
K∑

s=1

G y
l,s xs z +

L∑

s=1

H y
l,s ys z

Z =
K∑

s=1

Gz
s xs z +

L∑

s=1

H z
s ys z (18)

(e) The coefficients of x2
k z and y2

l z in (15) are ak Gx
k,k and −bl H y

l,l , respectively,

thus Gx
k,k = 0 and H y

l,l = 0 for all k, l (1 ≤ k ≤ K , 1 ≤ l ≤ L). The coefficient of
xk xl z (k �= l) in (15) is ak Gx

k,l + al Gx
l,k = 0. Since the system is kinetic, Gx

k,l and
Gx

l,k are nonnegative and thus these coefficients are equal to zero for all k, l (1 ≤ k ≤
K , 1 ≤ l ≤ K , k �= l). Similarly, H y

j,s = 0 for all 1 ≤ j ≤ L , 1 ≤ s ≤ L , j �= s.

(f) Finally, the coefficients of xk yl z in (15) is ak H x
k,l − bl G

y
l,k = 0 where H x

k,l

and G y
l,k are nonnegative for all k, l (1 ≤ k ≤ K , 1 ≤ l ≤ L). Whithout the loss of

generality, it may be assumed that H x
k,l = bl Ak,l where Ak,l ≥ 0. Thus G y

l,k = ak Ak,l .
Using that the system is kinetically mass conserving, we obtain the formula for Z .

(g) If K = 0 or L = 0, then it can be shown easily that Xk = Yl = Z = 0. If for
example L = 0, then the same proof can be repeated with bl = −cl where cl > 0.
Then in case (f) ak H x

k,l + cl G
y
l,k = 0 where ak > 0, cl > 0, H x

k,l ≥ 0, G y
l,k ≥ 0 and

thus H x
k,l = G y

l,k = 0.

Example 4 If V (x, y, z) = x2− y2 and �x = �y = �z = 1, then the equation system
is (a ≥ 0):

x ′ = ayz

y′ = axz

z′ = −axz − ayz (19)

A possible reaction is the following:

X+ Z
a→ X+ Y

a← Y+ Z
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Example 5 If V (x1, x2, y1, y2, z) = x2
1 + x2

2 − y2
1 − y2

2 and �x
1 = �x

2 = �
y
1 = �

y
2 =

�z = 1, then the equation system is (a, b, c, d ≥ 0):

x ′1 = ay1z + by2z y′1 = ax1z + cx2z

x ′2 = cy1z + dy2z y′2 = bx1z + dx2z

z′ = −x ′1 − x ′2 − y′1 − y′2 (20)

A possible reaction is the following:

X1 + Z
1→ aY1 + bY2 + X1 + (1− a− b)Z

X2 + Z
1→ cY1 + dY2 + X2 + (1− c− d)Z

Y1 + Z
1→ aX1 + cX2 + Y1 + (1− a− c)Z

Y2 + Z
1→ bX1 + dX2 + Y2 + (1− b− d)Z

Another possible reaction can be seen in Fig. 4.

3.2 The first integral is a binary quadratic form

Now we investigate first integrals that are quadratic homogeneous polynomials in two
variables, that is, V (x, y) = ax2 + 2bxy + cy2. Obviously, if V is a first integral for
a system, then any nonnegative constant multiples of it is also a first integral for the
same system. Thus, without the loss of generality, it may be assumed that a > 0 and
b �= 0. Consider the following differential equation system

Fig. 4 Reaction system for (20)

a

b

c

d

a

c

b

d

X1 Z

X1 Y1

X1 Y2

X2 Z

X2 Y1

X2 Y2

Y1 Z

Y2 Z
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x ′ = A1x2 + B1xy + C1 y2 + D1x + E1 y + F1

y′ = A2x2 + B2xy + C2 y2 + D2x + E2 y + F2 (21)

and suppose that the differential equation system is kinetic. Then the following state-
ments hold.

Theorem 6 The function V (x, y) = ax2 + 2bxy + cy2 where a > 0, c > 0, ac −
b2 �= 0 is a first integral for the system (21), if and only if it has the following form
(K ≥ 0, L ≥ 0):

x ′ = −bK x2 + (−cK + bL)xy + cLy2

y′ = aK x2 + (bK − aL)xy − bLy2 (22)

If the system (22) is kinetically mass conserving then x ′ = y′ = 0.

Theorem 7 The function V (x, y) = ax2+2bxy+cy2 where a > 0, b > 0, c > 0,

ac − b2 = 0 is a first integral for the system (21), if and only if it has the following
form (K ≥ 0, L ≥ 0, M ≥ 0, N ≥ 0, S is arbitrary):

x ′ = −bK x2 + cSxy + cLy2 − bMx + cN y

y′ = aK x2 − bSxy − bLy2 + aMx − bN y (23)

If the system (23) is kinetically mass conserving with some positive numbers �1, �2
then it has the form

x ′ = −�2 K x2 + �2Sxy + �2Ly2 − �2 Mx + �2 N y

y′ = �1 K x2 − �1Sxy − �1Ly2 + �1 Mx − �1 N y (24)

Theorem 8 The function V (x, y) = ax2 − 2bxy + cy2 where a > 0, b > 0, c >

0, ac− b2 = 0 is a first integral for the system (21), if and only if it has the following
form (K ≥ 0, L ≥ 0, M ≥ 0, N ≥ 0, R ≥ 0, S is arbitrary):

x ′ = bK x2 + cSxy + cLy2 + bMx + cN y + cR

y′ = aK x2 + bSxy + bLy2 + aMx + bN y + bR (25)

If the system (25) is kinetically mass conserving then x ′ = y′ = 0.

Theorem 9 The function V (x, y) = ax2 + 2bxy − cy2 where a > 0, c > 0, b �= 0
is a first integral for the system (21), if and only if it has the following form (K ≥
0, L ≥ 0, M ≥ 0):

x ′ = −bK x2 + (cK − bL)xy + cLy2 − bMx + cMy

y′ = aK x2 + (bK + aL)xy + bLy2 + aMx + bMy (26)

If the system (26) is kinetically mass conserving then x ′ = y′ = 0.
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Theorem 10 The function V (x, y) = ax2 + 2bxy where a > 0, b �= 0 is a first
integral for the system (21), if and only if it has the following form (K ≥ 0, M ≥ 0,

S is arbitrary):

x ′ = −bK x2 − bSxy − bMx

y′ = aK x2 + (bK + aS)xy + bSy2 + aMx + bMy (27)

If the system (27) is kinetically mass conserving then x ′ = y′ = 0.

Proof of Theorem 6 The function V is a first integral for the system (21) if and only
if its Lie-derivative with respect to the system is equal to zero, that is,

1

2

(
(2ax + 2by)x ′ + (2bx + 2cy)y′

) = 0 (28)

Equations (i) − (i x) hold since the coefficients of the following monomials in (28)
are equal to zero and (x) holds since the system kinetic:

(i) x3 : a A1 + bA2 = 0
(i i) y3 : bC1 + cC2 = 0
(i i i) x2 y : bA1 + aB1 + cA2 + bB2 = 0
(iv) xy2 : bB1 + aC1 + cB2 + bC2 = 0
(v) x2 : aD1 + bD2 = 0
(vi) y2 : bE1 + cE2 = 0
(vi i) xy : bD1 + aE1 + cD2 + bE2 = 0
(vi i i) x : aF1 + bF2 = 0
(i x) y : bF1 + cF2 = 0
(x) C1 ≥ 0, E1 ≥ 0, F1 ≥ 0, A2 ≥ 0, D2 ≥ 0, F2 ≥ 0

Since A2, C1 ≥ 0, without the loss of generality, it can be assumed that A2 = aK and
C1 = cL where K , L ≥ 0. Thus, because of (i) and (i i), A1 = −bK and C2 = −bL .
Substituting these into (i i i) and (iv) gives

aB1 + bB2 = −(ac − b2)K , bB1 + cB2 = −(ac − b2)L

Since ac − b2 �= 0, the unique solution of this equation system is B1 = −cK + bL
and B2 = bK − aL .

In (v) and (vi), let D2 := aM and E1 := cN where M, N ≥ 0. Thus, D1 = −bM
and E2 = −bN . Substituting these into (vi i) gives (ac − b2)(M + N ) = 0. Since
ac−b2 �= 0, it follows that M = N = 0 and thus D1 = D2 = E1 = E2 = 0. Finally,
the unique solution of the system (vi i i)− (i x) is F1 = F2 = 0.

If, moreover, the system (22) is kinetically mass conserving, then there exist positive
numbers �1 and �2 such that the following equalities hold:

(xi) K (−�1b + �2a) = 0
(xii) K (−�1b + �2a)+ L(�1b − �2a) = 0
(xii i) L(�1c − �2b) = 0
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Fig. 5 Trajectories for Examples 6 and 7 a a = 2, b = 1, c = 3, K = 1, L = 1, b a = 1, b = −3, c =
2, K = 1, L = 1

If K �= 0 and L �= 0 then from (xi) and (xii i) it follows that ac− b2 = 0 which is
a contradiction. If, for example, K �= 0 and L = 0 then from (xi) and (xii) we obtain
the same. Thus, K = L = 0.

Theorems 7–10 can be proved very similarly. �

Remark 2 The stationary points of system (22) are (1) (x, y) = (0, 0); (2) if L �= 0

and K �= 0, then y = K

L
x ; (3) if L = 0, then x = 0; (4) if K = 0, then y = 0.

If ac − b2 > 0, then the trajectories lie on an ellipse while if ac − b2 < 0, then
the trajectories lie on a hyperbola as shown in Fig. 5a, b. Examples for reactions and
trajectories for system (22) are:

Example 6 If a = 2, b = 1, c = 3, K = 1, L = 1 then the system is

x ′ = −x2 − 2xy + 3y2

y′ = 2x2 − xy − y2

A possible reaction is the following:

2X+ Y
2← 2X

1→ X
1← X+ Y

2→ Y
1← 2Y

3→ X+ 2Y

Example 7 If a = 2, b = −3, c = 2, K = 1, L = 1 then the system is

x ′ = 3x2 − 5xy + 2y2

y′ = x2 − 4xy + 3y2
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A possible reaction is the following:

2X+ Y
1← 2X

3→ 3X

X+ 2Y
2← 2Y

3→ Y

X
4← X+ Y

5→ Y

3.3 Shifted sum of squares

Theorem 11 Let us consider the differential equation system (21). Suppose that this
system is kinetic. The function V (x, y) = (x + a)2 + (x + b)2 is a first integral for
the system (21) if and only if it has the following form:

x ′ = Ay(y + b)− Bx(y + b) = Ay2 − Bxy − bBx + bAy

y′ = Bx(x + a)− Ay(x + a) = Bx2 − Axy + aBx − a Ay (29)

where A ≥ 0, B ≥ 0, a ≥ 0, b ≥ 0. If a < 0, then B = 0, and if b < 0, then A = 0.
From this it follows that there are no periodic orbits in the first orthant.

If V (x, y) = (x + 1)2 + (y + 1)2, then the equations and the reactions are

AB

B
A

B

A

X Y

XY

2X2X Y

2YX 2Y

4 Computer help

Finally let us mention that most of our statements can be obtained using either the
Mathematica package ReactionKinetics [20,35] or by simple additional pro-
grams. E.g. the following simple code checks if negative cross effect is present in a
polynomial or not.
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CrossEffectQ[polyval_, vars_]:= Module[{M=Length[vars]},

And @@ (Map[Not[Negative[#]] &, Flatten[MapThread[ReplaceAll,

{MonomialList[polyval, vars],Thread[vars->#] & /@

(1 - IdentityMatrix[M])}]]])].

And now let us use the newly defined function.

CrossEffectQ[{d, c-4yx2+5xy+6z+7w, ax+2y, -bxy},{x,y,z,w}]

The answer is as expected depending on the signs of the parameters.

!Negative[d] && !Negative[c] && !Negative[a] && !Negative[-b]

A more easily readable version leads to the same result.

CrossEffectQ2[polyval_, vars_] :=Module[{M = Length[vars], L},

L[i_] := If[Head[polyval[[i]]] === Plus,

Apply[List, polyval[[i]]], {polyval[[i]]}] /. MapThread[Rule,

{vars, ReplacePart[ConstantArray[1, M], {i} -> 0]}];

And @@ Map[# >= 0 &, Flatten[Table[L[i], {i, 1, M}]]]]

Using this function for the same example

CrossEffectQ2[{d, c-4yx2+5xy+6z+7w, ax+2y, -bxy},{x,y,z,w}]

we obtain the following result

d >= 0 && c >= 0 && a >= 0 && -b >= 0

5 Discussion and outlook

5.1 Other types of first integrals

We wonder if it is possible to fully characterize those kinetic differential equations
which are of the second degree and have a general quadratic first integral.

We might find to try other types of first integrals. Let us mention one simple, still
interesting result.

Statement 1 Among the polynomial differential equations of the form

x ′ = ax2 + bxy + cy2 + dx + ey + f

y′ = Ax2 + Bxy + Cy2 + Dx + Ey + F (30)
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(defined in the positive quadrant) the only one having

V (p, q) := p + q − ln(p)− ln(q)

as its first integral is

x ′ = bxy − bx y′ = −bxy + by, (31)

i. e. the Lotka–Volterra equations (allowing possibly time reversal).

Note that the it is not assumed that (30) is a kinetic differential equation, and in the
result no restriction is made on the sign of b.

This result is very similar to the result leading uniquely to the Lotka–Volterra model
under different circumstances [12,13,19,21,23,34,37].

One might try to generalize this result to the multidimensional case.
Another form of interesting first integrals is a free energy like function:

V (c) :=
M∑

m=1

cm ln

(
cm

c0
m

)
,

which turned out to be a useful Lyapunov function for broad classes of reactions
[15,39]. Gonzalez-Gascon and Salas [10] have systematically found this type of first
integrals (and other types, as well) for three dimensional Lotka–Volterra systems.

The question arises if these first integrals are kept by some numerical methods or
not.

5.2 Relations to numerical methods

Even the simplest kinetic differential equations can only be solved by numerical meth-
ods, therefore the question if such a method is able to keep important qualitative proper-
ties of the models arouse very early [1,7]. The first positive answers included numer-
ical methods which keep the property of kinetic differential equations that starting
from a nonnegative initial concentration they provide solutions which are nonnegative
throughout their total domain of existence [7,16]. Similarly, numerical methods were
constructed to keep linear and quadratic first integrals. The meaning and existence
of linear first integrals have been studied in detail: they usually represent mass con-
servation. The existence of a positive linear first integral together with nonnegativity
[38,39] of the solutions implies that the complete solution of the kinetic differential
equation is defined on the whole real line, which is not necessarily the case for systems
that are not mass conserving. However, quadratic first integrals were almost neglected.

We have always used global first integrals. Another approach is given by Gonzalez-
Gascon and Salas [10] who started from local first integrals and tried to extend them
in cases if it was possible.
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